[Dec. 12, 2023: JD Shavit, The Brighter Side of News]
With plastic pollution reaching alarming levels in marine environments, this discovery could herald a new era in ecological restoration. (CREDIT: Naja Bertolt Jensen.)
In a remarkable fusion of nature and technology, scientists have drawn inspiration from the humble Hawaiian apple snail to develop a pioneering robot prototype designed to combat the menace of microplastics in our planet's water bodies. With the potential to revolutionize how we address this pressing environmental issue, this innovative creation promises to play a crucial role in safeguarding our oceans, seas, and lakes.
The concept behind this groundbreaking robotic design is rooted in the unique abilities of the Hawaiian apple snail, scientifically known as Pomacea canaliculata. This common aquarium-dwelling snail possesses a remarkable method for capturing floating food particles through the undulating motion of its foot. It utilizes this undulating action to create water surface flow, effectively vacuuming up food particles suspended on the water's surface.
At present, most plastic collection devices predominantly rely on drag nets or conveyor belts to corral and remove larger plastic debris from water bodies. However, these methods fall short when it comes to the critical task of retrieving microplastics, which are minuscule particles of plastic pollution. These tiny plastic fragments pose a significant threat to marine life as they can be ingested by organisms and subsequently enter the food chain, with potential repercussions for human health due to their carcinogenic properties.
Professor Sunghwan "Sunny" Jung, a leading expert in the field and a member of the Department of Biological and Environmental Engineering at Cornell University, spearheaded this pioneering research. He drew inspiration from the snail's efficient feeding mechanism, which operates at the interface between air and water.
Professor Jung is the senior author of the research study titled "Optimal free-surface pumping by an undulating carpet," published in the prestigious scientific journal Nature Communications.
The ingenious prototype developed by the research team is an adaptation of an existing design, representing a crucial step toward a practical solution for microplastic cleanup. To create this innovative device, a 3D printer was employed to produce a flexible, carpet-like sheet with the capacity for undulating motion. Underneath this sheet lies a helical structure that rotates in a manner akin to a corkscrew, inducing undulation and generating a traveling wave on the water's surface.
An essential aspect of this groundbreaking research was the meticulous analysis of fluid dynamics. Professor Jung emphasized the importance of comprehending the intricate fluid flow patterns, stating, "We needed to understand the fluid flow to characterize the pumping behavior." Unlike conventional closed-system pumps that require a tube to draw in water and particles, the snail-inspired open system proves to be far more efficient. Remarkably, the small prototype operates on a mere 5 volts of electricity while efficiently drawing in water.
However, owing to the additional weight of a battery and motor, the researchers acknowledge the need to attach a flotation device to the robot to prevent it from sinking in real-world deployment.
Read more here: https://www.thebrighterside.news/post/snail-inspired-robot-takes-on-ocean-microplastic-cleanup